Abstract

Aim: To develop a one-dimensional convolutional neural network-based quantitative structure-activity relationship (1D-CNN-QSAR) model to identify novel anthrax inhibitors and analyze chemical space. Methods: We developed a 1D-CNN-QSAR model to identify novel anthrax inhibitors. Results: The statistical results of the 1D-CNN-QSAR model showed a mean square error of 0.045 and a predicted correlation coefficient of 0.79 for the test set. Further, chemical space analysis showed more than 80% fragment pair similarity, with activity cliffs associated with carboxylic acid, 2-phenylfurans, N-phenyldihydropyrazole, N-phenylpyrrole, furan, 4-methylene-1H-pyrazol-5-one, phenylimidazole, phenylpyrrole and phenylpyrazolidine. Conclusion: These fragments may serve as the basis for developing potent novel drug candidates for anthrax. Finally, we concluded that our proposed 1D-CNN-QSAR model and fingerprint analysis might be used to discover potential anthrax drug candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.