Abstract

A convolutional discriminative feature learning method is presented for induction motor fault diagnosis. The approach firstly utilizes back-propagation (BP)-based neural network to learn local filters capturing discriminative information. Then, a feed-forward convolutional pooling architecture is built to extract final features through these local filters. Due to the discriminative learning of BP-based neural network, the learned local filters can discover potential discriminative patterns. Also, the convolutional pooling architecture is able to derive invariant and robust features. Therefore, the proposed method can learn robust and discriminative representation from the raw sensory data of induction motors in an efficient and automatic way. Finally, the learned representations are fed into support vector machine classifier to identify six different fault conditions. Experiments performed on a machine fault simulator indicate that compared with the current state-of-the-art methods, the proposed method shows significant performance gains, and it is effective and efficient for induction motor fault diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.