Abstract

This paper presents a convolution quadrature time-domain boundary element method for 2-D and 3-D elastic wave propagation in general anisotropic solids. A boundary element method (BEM) has been developed as an effective and accurate numerical approach for wave propagation problems. However, a conventional time-domain BEM has a critical disadvantage; it produces unstable numerical solutions for a small time increment. To overcome this disadvantage, in this paper, a convolution quadrature method (CQM) is applied to the time-discretization of boundary integral equations in 2-D and 3-D general anisotropic solids. As numerical examples, the problems of elastic wave scattering by a cavity are solved to validate the present method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.