Abstract

We propose a new type of non-parametric density estimators fitted to random variables with lower or upper-bounded support. To illustrate the method, we focus on nonnegative random variables. The estimators are constructed using kernels which are densities of empirical means of m i.i.d. nonnegative random variables with expectation 1. The exponent m plays the role of the bandwidth. We study the pointwise mean square error and propose a pointwise adaptive estimator. The risk of the adaptive estimator satisfies an almost oracle inequality. A noteworthy result is that the adaptive rate is in correspondence with the smoothness properties of the unknown density as a function on (0,+∞). The adaptive estimators are illustrated on simulated data. We compare our approach with the classical kernel estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.