Abstract

This work presents a novel global digital image correlation (DIC) method, based on a newly developed convolution finite element (C-FE) approximation. The convolution approximation can rely on the mesh of linear finite elements and enables arbitrarily high order approximations without adding more degrees of freedom. Therefore, the C-FE based DIC can be more accurate than the usual FE based DIC by providing highly smooth and accurate displacement and strain results with the same element size. The detailed formulation and implementation of the method have been discussed in this work. The controlling parameters in the method include polynomial order, patch size, and dilation. A general choice of the parameters and their potential adaptivity have been discussed. The proposed DIC method has been tested by several representative examples, including the DIC challenge 2.0 benchmark problems, with comparison to the usual FE based DIC. C-FE outperformed FE in all the DIC results for the tested examples. This work demonstrates the potential of C-FE and opens a new avenue to enable highly smooth, accurate, and robust DIC analysis for full-field displacement and strain measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.