Abstract

Nowadays, graph representation learning methods, in particular graph neural network methods, have attracted great attention and performed well in many downstream tasks. However, most graph neural network methods have a single perspective since they start from the edges (or adjacency matrix) of graphs, ignoring the mesoscopic structure (high-order local structure). In this paper, we introduce HS-GCN (High-order Node Similarity Graph Convolutional Network), which can mine the potential structural features of graphs from different perspectives by combining multiple high-order node similarity methods. We analyze HS-GCN theoretically and show that it is a generalization of the convolution-based graph neural network methods from different normalization perspectives. A series of experiments have shown that by combining high-order node similarities, our method can capture and utilize the high-order structural information of the graph more effectively, resulting in better results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call