Abstract

An algebraic characterization of convolution and correlation is outlined. The basic algebraic structures generated on a suitable vector space by the two operations are described. The convolution induces an associative Abelian algebra over the real field; the correlation induces a not-associative, not-commutative — but Lieadmissible algebra — with a left unity. The algebraic connection between the two algebras is found to coincide with the relation of isotopy, an extension of the concept of equivalence. The interest of these algebraic structures with respect to information processing is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.