Abstract
Double groupoids are a type of higher groupoid structure that can arise when one has two distinct groupoid products on the same set of arrows. A particularly important example of such structures is the irrational torus and, more generally, strict 2-groups. Groupoid structures give rise to convolution operations on the space of arrows. Therefore, a double groupoid comes equipped with two product operations on the space of functions. In this article we investigate in what sense these two convolution operations are compatible. We use the representation theory of compact Lie groups to get insight into a certain class of 2-groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.