Abstract
We introduce the notions of relational groupoids and relational convolution algebras. We provide various examples arising from the group algebra of a group $G$ and a given normal subgroup $H$. We also give conditions for the existence of a Haar system of measures on a relational groupoid compatible with the convolution, and we prove a reduction theorem that recovers the usual convolution of a Lie groupoid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.