Abstract

Let $G$ be a connected graph. A function $f:V(G)\rightarrow \{0,1,2\}$ is a \textit{convex Roman dominating function} (or CvRDF) if every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$ and $V_1 \cup V_2$ is convex. The weight of a convex Roman dominating function $f$, denoted by $\omega_{G}^{CvR}(f)$, is given by $\omega_{G}^{CvR}(f)=\sum_{v \in V(G)}f(v)$. The minimum weight of a CvRDF on $G$, denoted by $\gamma_{CvR}(G)$, is called the \textit{convex Roman domination number} of $G$. In this paper, we determine the convex Roman domination numbers of some graphs and give some realization results involving convex Roman domination, connected Roman domination, and convex domination numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.