Abstract
We introduce the family of law-invariant convex risk functionals, which includes a wide majority of practically used convex risk measures and deviation measures. We obtain a unified representation theorem for this family of functionals. Two related optimization problems are studied. In the first application, we determine worst-case values of a law-invariant convex risk functional when the mean and a higher moment such as the variance of a risk are known. Second, we consider its application in optimal reinsurance design for an insurer. With the help of the representation theorem, we can show the existence and the form of optimal solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.