Abstract
In this work we study the convex set of quantum states from a quantum logical point of view. We consider an algebraic structure based on the convex subsets of this set. The relationship of this algebraic structure with the lattice of propositions of quantum logic is shown. This new structure is suitable for the study of compound systems and shows new differences between quantum and classical mechanics. This differences are linked to the nontrivial correlations which appear when quantum systems interact. They are reflected in the new propositional structure, and do not have a classical analogue. This approach is also suitable for an algebraic characterization of entanglement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.