Abstract

We consider the problem of scheduling unrelated parallel machines subject to release dates so as to minimize the total weighted completion time of jobs. The main contribution of this paper is a provably good convex quadratic programming relaxation of strongly polynomial size for this problem. The best previously known approximation algorithms are based on LP relaxations in time- or interval-indexed variables. Those LP relaxations, however, suffer from a huge number of variables. As a result of the convex quadratic programming approach we can give a very simple and easy to analyze 2-approximation algorithm which can be further improved to performance guarantee 3/2 in the absence of release dates. We also consider preemptive scheduling problems and derive approximation algorithms and results on the power of preemption which improve upon the best previously known results for these settings. Finally, for the special case of two machines we introduce a more sophisticated semidefinite programming relaxation and apply the random hyperplane technique introduced by Goemans and Williamson for the MaxCut problem; this leads to an improved 1.2752-approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.