Abstract
ABSTRACT Despite a plethora of centrality measures were proposed, there is no consensus on what centrality is exactly due to the shortcomings each measure has. In this manuscript, we propose to combine centrality measures pertinent to a network by forming their convex combinations. We found that some combinations, induced by regular points, split the nodes into the largest number of classes by their rankings. Moreover, regular points are found with probability and their induced rankings are insensitive to small variation. By contrast, combinations induced by critical points are scarce, but their presence enables the variation in node rankings. We also discuss how optimum combinations could be chosen, while proving various properties of the convex combinations of centrality measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.