Abstract

Pyrolysis of waste plastic is a prospective way of conversion of waste plastic into low-emissive hydrocarbon fuel. The present research is focused on the conversion of waste plastic into low-emissive hydrocarbon fuel by two process namely vacuum and catalytic cracking (activated carbon, activated carbon with granulated charcoal and activated carbon with calcium oxide). Waste plastic materials viz., polyethylene, polypropylene, polystyrene and polyethylene terephthalate were collected from local convenience store packing materials. Waste plastic material pyrolysis was conducted as individual plastics and as mixed feed in a new laboratory scale batch reactor. Hydrocarbon molecules from the basic materials are split under the impact of catalyst inside the reactor in 70–240 °C. The reduction of process takes place from 500–600 °C to 240 °C in the presence of catalyst. The analyses of pyrolysis products suggested that it can be used as a viable alternative to motor fuel. It was observed that the yield was better in the case of individual plastic material as opposed to mixed feed in all cases except polypropylene under non-catalysed vacuum process. The comparison of the GC-FID (TPH) report of the obtained oil with that of the commercial petrol clearly proves that the prepared oil is composed of petrol components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call