Abstract

Plastic-based insulation materials have been widely employed owing to their exceptional durability, cost-effectiveness, low weight, and low thermal conductivity. Nevertheless, the disposal of the insulation material waste (IMW) within construction waste and its recycling and recovery are challenging. Meanwhile, landfilling or incineration methods can release toxic chemicals into the environment. Consequently, the accumulation of IMW in construction waste has become a pressing environmental concern. To address this issue, this paper proposes a pyrolysis platform as a disposal management method for IMW that employs CO2 as a reactive medium. IMW composed of polystyrene in the form of extruded polystyrene underwent pyrolysis to yield pyrogenic products containing toxic chemicals. These toxic chemicals were subsequently transformed into syngas via homogeneous reactions with CO2 under certain thermal conditions and Ni/Al2O3 catalyst. This resulted in a significant reduction in the total peak areas of toxic substances in the pyrogenic oil compared with that obtained using N2 as a medium. Furthermore, the efficacy of CO2 was demonstrated to increase with an increase in the atmospheric concentration. This study implied that catalytic pyrolysis under CO2 conditions is a potential platform for converting toxic chemicals from IMW into syngas through homogeneous reactions with CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.