Abstract
Loss of insulin-secreting pancreatic β cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains β cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce β cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. β cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by β cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of β cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents β cell death and metabolic abnormalities. These data uncover a pathway for β cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have