Abstract
A number of countries have identified redundant large telecommunications antennas (TA) and indicated their intention to convert them into radio telescopes (RT). As the efficiency of a parabolic dish radio telescope depends on its surface quality and optical alignment, a careful assessment of these properties should be undertaken before conversion. Here, as a case study, we describe a laser scanning (LS) procedure we developed and used for the Warkworth 30[Formula: see text]m Cassegrain antenna. To investigate gravity-induced mechanical deformation of the antenna surfaces and structure, we conducted measurements at elevation angles ranging from 6 to 90 degrees. The ability of a laser scanner to survey its nominal [Formula: see text] steradian surroundings allows for simultaneous study of the main and subreflectors, readily permitting a dynamic investigation of variation of the telescope optics as elevation changes occur. In particular, the method we present here allows determination of the surface quality of both main and subreflectors, the displacement between centers of the reflectors, their relative rotations and focal length variation as a function of elevation angle. We discuss details of settings, measurements, data processing and analysis focusing on possible difficulties and pitfalls. In our case study, no significant elevation-dependent surface deformation of the reflectors was observed, with the overall standard deviation of the postfit residuals varying between 1.0 and 1.7[Formula: see text]mm as elevation angle changes from 90∘ to 6∘, respectively. We, therefore, conclude that in our case both the main reflector and the subreflector, as well as the telescope optics, remain unaffected by gravitational deformation within the accuracy of the measurements, a conclusion that can possibly be extended to the similar class of TA currently considered for conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.