Abstract

Design and safety optimization of ship-based nuclear power reactors have been performed. The neutronic and thermo-hydraulic programs of the three-dimensional X– Y– Z geometry have been developed for the analysis of ship-based nuclear power plant. Quasi-static approach is adopted to treat seawater effect and quasi-static approach is also employed to treat neutronic aspect during safety analysis. The reactors are loop type lead–bismuth-cooled fast reactors with nitride fuel and with relatively large coolant pipe above reactor core, the heat from primary coolant system is directly transferred to water–steam loop through steam generators. The power level is 100–200 MW th and excess reactivity is about 1$. Three types of core were investigated in the optimization process: balance, tall, and pancake with five values of Z– Y size ratio. As the optimization results, the core outlet temperature distribution is changing with the elevation angle of the reactor system. The pancake core type has larger temperature distribution change as the elevation angle changes due to the sea wave. The natural circulation capability is good for safety. However, large driving head of natural circulation may cause large temperature fluctuation as the elevation angle changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call