Abstract

We report the first shock-tube experiments on two-dimensional dual-mode air–SF $_6$ interfaces with different initial spectra subjected to a convergent shock wave. The convergent shock tube is specially designed with a tail opening to highlight the Bell–Plesset (BP) and mode-coupling effects on amplitude development of fundamental mode (FM). The results show that the BP effect promotes the occurrence of mode coupling, and the feedback of high-order modes to the FM also arises earlier in convergent geometry than that in its planar counterpart. Relatively, the amplitude growth of the FM with a higher mode number is inhibited by the feedback, and saturates earlier. The FM with a lower mode number is affected more heavily by the BP effect, and finally dominates the flow. A new model is proposed to well predict the amplitude growths of the FM and high-order modes in convergent geometry. In particular, for FM that reaches its saturation amplitude, the post-saturation relation is introduced in the model to achieve a better prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call