Abstract
We propose a nonlinear voter model to study the emergence of global consensus in opinion dynamics. In our model, agent i agrees with one of binary opinions with the probability that is a power function of the number of agents holding this opinion among agent i and its nearest neighbors, where an adjustable parameter α controls the effect of herd behavior on consensus. We find that there exists an optimal value of α leading to the fastest consensus for lattices, random graphs, small-world networks and scale-free networks. Qualitative insights are obtained by examining the spatiotemporal evolution of the opinion clusters.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have