Abstract

In this paper, we establish an upper bound for time to convergence to stationarity for the discrete time infinite alleles Moran model. If M is the population size and mu is the mutation rate, this bound gives a cutoff time of log(Mmu)/mu generations. The stationary distribution for this process in the case of sampling without replacement is the Ewens sampling formula. We show that the bound for the total variation distance from the generation t distribution to the Ewens sampling formula is well approximated by one of the extreme value distributions, namely, a standard Gumbel distribution. Beginning with the card shuffling examples of Aldous and Diaconis and extending the ideas of Donnelly and Rodrigues for the two allele model, this model adds to the list of Markov chains that show evidence for the cutoff phenomenon. Because of the broad use of infinite alleles models, this cutoff sets the time scale of applicability for statistical tests based on the Ewens sampling formula and other tests of neutrality in a number of population genetic studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.