Abstract
In this paper we consider large $\theta$ approximations for the stationary distribution of the neutral infinite alleles model as described by the the Poisson–Dirichlet distribution with parameter $\theta$. We prove a variety of Gaussian limit theorems for functions of the population frequencies as the mutation rate $\theta$ goes to infinity. In particular, we show that if a sample of size $n$ is drawn from a population described by the Poisson–Dirichlet distribution, then the conditional probability of a particular sample configuration is asymptotically normal with mean and variance determined by the Ewens sampling formula. The asymptotic normality of the conditional sampling distribution is somewhat surprising since it is a fairly complicated function of the population frequencies. Along the way, we also prove an invariance principle giving weak convergence at the process level for powers of the size-biased allele frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.