Abstract
<p style='text-indent:20px;'>In this paper, we shall study the convergence rates of Tikhonov regularizations for the recovery of the growth rates in a Lotka-Volterra competition model with diffusion. The ill-posed inverse problem is transformed into a nonlinear minimization system by an appropriately selected version of Tikhonov regularization. The existence of the minimizers to the minimization system is demonstrated. We shall propose a new variational source condition, which will be rigorously verified under a Hölder type stability estimate. We will also derive the reasonable convergence rates under the new variational source condition.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.