Abstract

The incompressible limit of nonlinear diffusion equations of porous medium type has attracted a lot of attention in recent years, due to its ability to link the weak formulation of cellpopulation models to free boundary problems of Hele–Shaw type. Although a vast literature is available on this singular limit, little is known on the convergence rate of the solutions. In this work, we compute the convergence rate in a negative Sobolev norm and, upon interpolating with BV-uniform bounds, we deduce a convergence rate in appropriate Lebesgue spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.