Abstract

We study the combination of quasi-neutral limit and viscosity limit of smooth solution for the three-dimensional compressible viscous Navier-Stokes-Poisson-Korteweg equation for plasmas and semiconductors. When the Debye length and viscosity coefficients are sufficiently small, the initial value problem of the model has a unique smooth solution in the time interval where the corresponding incompressible Euler equation has a smooth solution. We also establish a sharp convergence rate of smooth solutions for three-dimensional compressible viscous Navier-Stokes-Poisson-Kortewe equation towards those for the incompressible Euler equation in combining quasi-neutral limit and viscosity limit. Moreover, if the incompressible Euler equation has a global smooth solution, the maximal existence time of three-dimensional compressible Navier-Stokes-Poisson-Korteweg equation tends to infinity as the Debye length and viscosity coefficients goes to zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.