Abstract

In this paper, we study the incompressible limit of the three-dimensional compressible magnetohydrodynamic equations, which models the dynamics of compressible quasi-neutrally ionized fluids under the influence of electromagnetic fields. Based on the convergence-stability principle, we show that, when the Mach number, the shear viscosity coefficient, and the magnetic diffusion coefficient are sufficiently small, the initial-value problem of the model has a unique smooth solution in the time interval where the ideal incompressible magnetohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Mach number, the shear viscosity coefficient, and the magnetic diffusion coefficient go to zero. Moreover, we obtain the convergence of smooth solutions for the model forwards those for the ideal incompressible magnetohydrodynamic equations with a sharp convergence rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.