Abstract
The binomial tree methods (BTM), first proposed by Cox, Ross and Rubinstein [J. Cox, S. Ross, M. Rubinstein, Option pricing: A simplified approach, J. Finan. Econ. 7 (1979) 229–264] in diffusion models and extended by Amin [K.I. Amin, Jump diffusion option valuation in discrete time, J. Finance 48 (1993) 1833–1863] to jump-diffusion models, is one of the most popular approaches to pricing options. In this paper, we present a binomial tree method for Asian options in jump-diffusion models and show its equivalence to certain explicit difference scheme. Employing numerical analysis and the notion of viscosity solution, we prove the uniform convergence of the binomial tree method for European-style and American-style Asian options.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.