Abstract

The binomial tree method (BTM), first proposed by Cox et al. (1979) [4] in diffusion models and extended by Amin (1993) [9] to jump–diffusion models, is one of the most popular approaches to pricing options. In this paper, we present a binomial tree method for lookback options in jump–diffusion models and show its equivalence to certain explicit difference scheme. We also prove the existence and convergence of the optimal exercise boundary in the binomial tree approximation to American lookback options and give the terminal value of the genuine exercise boundary. Further, numerical simulations are performed to illustrate the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.