Abstract

We tested whether signaling pathways induced by systemin, oligosaccharide elicitors (OEs), and ultraviolet (UV)-B radiation share common components in Lycopersicon peruvianum suspension-cultured cells. These stress signals all induce mitogen-activated protein kinase (MAPK) activity. In desensitization assays, we found that pretreatment with systemin and OEs transiently reduced the MAPK response to a subsequent treatment with the same or a different elicitor. In contrast, MAPK activity in response to UV-B increased after pretreatment with systemin and OEs. These experiments demonstrate the presence of signaling components that are shared by systemin, OEs, and UV-B. Based on desensitization assays, it is not clear if the same or different MAPKs are activated by different stress signals. To identify specific stress-responsive MAPKs, we cloned three MAPKs from a tomato (Lycopersicon esculentum) leaf cDNA library, generated member-specific antibodies, and performed immunocomplex kinase assays with extracts from elicited L. peruvianum cells. Two highly homologous MAPKs, LeMPK1 and LeMPK2, were activated in response to systemin, four different OEs, and UV-B radiation. An additional MAPK, LeMPK3, was only activated by UV-B radiation. The common activation of LeMPK1 and LeMPK2 by many stress signals is consistent with the desensitization assays and may account for substantial overlaps among stress responses. On the other hand, MAPK activation kinetics in response to elicitors and UV-B differed substantially, and UV-B activated a different set of LeMPKs than the elicitors. These differences may account for UV-B-specific responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.