Abstract

We prove the convergence of certain second-order numerical methods to weak solutions of the Navier–Stokes equations satisfying, in addition, the local energy inequality, and therefore suitable in the sense of Scheffer and Caffarelli–Kohn–Nirenberg. More precisely, we treat the space-periodic case in three space dimensions and consider a full discretization in which the classical Crank–Nicolson method (θ-method with theta =1/2) is used to discretize the time variable. In contrast, in the space variables, we consider finite elements. The convective term is discretized in several implicit, semi-implicit, and explicit ways. In particular, we focus on proving (possibly conditional) convergence of the discrete solutions toward weak solutions (satisfying a precise local energy balance) without extra regularity assumptions on the limit problem. We do not prove orders of convergence, but our analysis identifies some numerical schemes, providing alternate proofs of the existence of “physically relevant” solutions in three space dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call