Abstract

We study the convergence properties of gradient descent for training deep linear neural networks, i.e., deep matrix factorizations, by extending a previous analysis for the related gradient flow. We show that under suitable conditions on the stepsizes gradient descent converges to a critical point of the loss function, i.e., the square loss in this article. Furthermore, we demonstrate that for almost all initializations gradient descent converges to a global minimum in the case of two layers. In the case of three or more layers, we show that gradient descent converges to a global minimum on the manifold matrices of some fixed rank, where the rank cannot be determined a priori.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.