Abstract
For stationary diffusion-type equations, we study the convergence of grid inhomogeneous boundary-value problems of a version of the mimetic finite difference (MFD) technique in which grid scalars are defined inside grid cells and grid vectors are specified by their local normal coordinates on the plane faces of grid cells. Grid equations and boundary conditions are formulated in operator form using consistent grid analogs of invariant first-order differential operators and of boundary operators. Convergence is studied on the basis of the theory of operator difference schemes; i.e., a priori estimates for the norm of the solution error in terms of the norm of the approximation error are obtained that guarantee convergence of the first order under inhomogeneous boundary conditions of the first, second, and third kind in a domain with a curvilinear boundary. Grid analogs of embedding inequalities and approximation relations obtained earlier are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Moscow University Computational Mathematics and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.