Abstract

Consider the scattering of a time-harmonic elastic plane wave by a periodic rigid surface. The elastic wave propagation is governed by the two-dimensional Navier equation. Based on a Dirichlet-to-Neumann (DtN) map, a transparent boundary condition (TBC) is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. By using the finite element method, the discrete problem is considered, where the TBC is replaced by the truncated DtN map. A new duality argument is developed to derive the a posteriori error estimate, which contains both the finite element approximation error and the DtN truncation error. An a posteriori error estimate based adaptive finite element algorithm is developed to solve the elastic surface scattering problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.