Abstract
Optimized Schwarz methods form a class of domain decomposition methods for the solution of elliptic partial differential equations. When the subdomains are overlapping or nonoverlapping, these methods employ the optimal value of parameter(s) in the boundary condition along the artificial interface to accelerate its convergence. In the literature, the analysis of optimized Schwarz methods rely mostly on Fourier analysis and so the domains are restricted to be regular (rectangular). As in earlier papers, the interface operator can be expressed in terms of Poincare–Steklov operators. This enables the derivation of an upper bound for the spectral radius of the interface operator on essentially arbitrary geometry. The problem of interest here is a PDE with a discontinuous coefficient across the artificial interface. We derive convergence estimates when the mesh size h along the interface is small and the jump in the coefficient may be large. We consider two different types of Robin transmission conditions in the Schwarz iteration: the first one leads to the best estimate when h is small, whereas for the second type, we derive a convergence estimate inversely proportional to the jump in the coefficient. This latter result improves upon the rate of popular domain decomposition methods such as the Neumann–Neumann method or FETI-DP methods, which was shown to be independent of the jump.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have