Abstract
In convergence analysis of finite element methods for singularly perturbed reaction–diffusion problems, balanced norms have been successfully introduced to replace standard energy norms so that layers can be captured. In this article, we focus on the convergence analysis in a balanced norm on Bakhvalov-type rectangular meshes. In order to achieve our goal, a novel interpolation operator, which consists of a local $$L^2$$ projection operator and the Lagrange interpolation operator, is introduced for a convergence analysis of optimal order in the balanced norm. The analysis also depends on the stabilities of the $$L^2$$ projection and the characteristics of Bakhvalov-type meshes. Furthermore, we obtain a supercloseness result in the balanced norm, which appears in the literature for the first time. This result depends on another novel interpolant, which consists of the local $$L^2$$ projection operator, a vertices-edges-element operator and some corrections on the boundary.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have