Abstract

This paper is devoted to the numerical analysis of a first order fractional-step time-scheme (via decomposition of the viscosity) and “inf-sup” stable finite-element spatial approximations applied to the Primitive Equations of the Ocean. The aim of the paper is twofold. First, we prove that the scheme is unconditionally stable and convergent towards weak solutions of the Primitive Equations. Second, optimal error estimates for velocity and pressure are provided of order O(k+hl) for l=1 or l=2 considering either first or second order finite-element approximations (k and h being the time step and the mesh size, respectively). In both cases, these error estimates are obtained under the same constraint k≤Ch2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.