Abstract

Current effects on waves (CEW) are among the most intricate physical processes in wave evolution. In this study, we used a coupled wave-tide-circulation model for the Northwest Atlantic to investigate current effects on storm waves during Hurricane Igor in 2010. Validated with extensive buoy and altimeter data, the inclusion of CEW in the model significantly improves the accuracy in simulating significant wave heights (Hs) by up to 21.3% for a wave buoy. Storm waves experience significant temporal and spatial modulation by multi-scale currents. Storm-driven currents have the most pronounced impact to the right of the storm track, which typically align with wave propagation and reduce Hs by up to 12.1%. The subsequent near-inertial oscillations induce temporal fluctuations of wave convergence and divergence at near-inertial frequencies, which also occurs in regions with strong tidal currents but at tidal frequencies. Furthermore, storm waves are modulated by the Gulf Stream, Labrador Current and associated mesoscale eddies. Overall, these multi-scales yield strong effects on storm waves (Hs > 3.0 m), significantly modulating Hs (−25.2%–+55.4%) and mean wave periods (−14.9%–+15.7%). The mean wave energy power shows more significant modulation by multi-scale currents, reflecting the combined effects of changing wave states and current-induced transport of wave energy. CEW are governed by the interactive dynamic and kinematic effects. The relative wind effect is the primary mechanism for lower storm waves by reducing energy input to waves and influences downstream wave states. Among kinematic effects, current-induced wave refraction typically plays a dominant role in redistributing wave energy. This study systematically quantified the modulation of storm waves by multi-scale currents and revealed the underlying mechanisms, providing a comprehensive understanding of extreme wave states under coupled ocean dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.