Abstract
AbstractThis article concentrates on the parameter estimation of brushless DC motor, where the stator current and winding back electromotive force are taken as the motor states, while the stator resistance and inductance are taken into consideration and augmented into the state vector. Based on this augmented model, a modified adaptive extended Kalman filter is proposed which updates the process noise covariance matrix in real time with the current input‐output data, and takes the state estimates by the traditional extended Kalman filter as one‐step estimation for the calculation of the covariance matrix. The convergence analysis is given to verify the theoretical results. Finally, the simulation results show that the proposed algorithm can effectively improve the estimation accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.