Abstract
Globalized dual heuristic programming (GDHP) algorithm is a special form of approximate dynamic programming (ADP) method that solves the Hamilton–Jacobi–Bellman (HJB) equation for the case where the system takes control-affine form subject to the quadratic cost function. This study incorporates the deep neural networks (DNNs) as a function approximator to inherit the advantages of which to express high-dimensional function space. Elementwise error bound of the costate function sequence is newly derived and the convergence property is presented. In the approximated function space, uniformly ultimate boundedness (UUB) condition for the weights of the general multi-layer NNs weights is obtained. It is also proved that under the gradient descent method for solving the moving target regression problem, UUB gradually converges to the value, which exclusively contains the approximation reconstruction error. The proposed method is demonstrated on the continuous reactor control in aims to obtain the control policy for multiple initial states, which justifies the necessity of DNNs structure for such cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.