Abstract
A significant method has recently been developed for solving the inverse elastic surface scattering problem which arises from near-field imaging applications. The method utilizes the transformed field expansion along with the Fourier series expansion to deduce an analytic solution for the direct problem. Implemented via the fast Fourier transform, an explicit reconstruction formula is obtained to solve the linearized inverse problem. Numerical examples show that the method is efficient and effective to reconstruct scattering surfaces with subwavelength resolution. This paper is devoted to the mathematical analysis of the proposed method. The well-posedness is established for the solution of the direct problem. The convergence of the power series solution is examined. A local uniqueness result is proved for the inverse problem where a single incident field with a fixed frequency is needed. The error estimate is derived for the reconstruction formula. It provides a deep insight on the trade-off among resolution, accuracy, and stability of the solution for the inverse problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.