Abstract

The behavior of two cementitious materials during thermal changes associated with freezing and thawing in presence of calcium chloride deicing salts was examined. The two systems consisted of a conventional portland cement-based material and an alternative economically friendly cement that formed a solid by carbonating a calcium silicate–based cement. Low-temperature differential scanning calorimetry was used to quantify the phase changes associated with ice formation, eutectic solution transformation, and calcium oxychloride formation. Longitudinal guarded comparative calorimetry was used to detect the damage that developed as a result of the expansive pressures created by these phases when they form. In both systems exposed to low salt concentration, the damage was primarily caused by hydraulic and osmotic pressure. This type of damage was moderate at low degrees of saturation (e.g., <90%); however, as the degree of saturation increased, so did the damage. In conventional cementitious systems at higher salt concentrations, the damage that developed was mainly caused by the formation of calcium oxychlorides. However, in the cementitious materials made by carbonating calcium silicate–based cement calcium, hydroxide was not present. Therefore, at higher salt concentrations, calcium oxychloride did not form, and as a result, no damage developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.