Abstract

This research evaluates whether there is any advantage of selecting one of the thermal methods of sludge pretreatment, conventional heating (CH) and microwave hydrolysis (MW), over another to enhance municipal sludge disintegration and performance of thermophilic anaerobic digestion (AD). For this purpose, a custom-built CH system simulating MW hydrolysis under identical heating and cooling profiles was used. The effects of three main pretreatment parameters including pretreatment method (CH and MW), heating ramp rate (3, 6 and 11°C/min) and final temperature (80, 120 and 160°C) on sludge solubilization and performance of thermophilic batch AD were evaluated. The effects of CH and MW hydrolysis were observed to be similar for sludge disintegration and digester performance (p-value>0.05), while the effects of final temperature and heating ramp rate were proven to be different (p-value<0.05). According to the results, it is essential to apply MW and CH pretreatments under identical experimental condition for an unbiased comparison which supports the findings of the author’s earlier study under mesophilic condition. Failing to address this issue explains the significant inconsistency observed among the findings of the previous CH vs. MW comparison studies that were unable to implement identical thermal profiles (between CH and MW) during sludge pretreatment. In comparison with mesophilic AD, thermophilic AD revealed lower biodegradation rate constant at the highest pretreatment temperature tested (160°C), suggesting its higher sensitivity to the inhibitory effects of thermal pretreatment at the elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.