Abstract
Order reduction of the large-scale linear dynamic systems (LSLDSs) using stability equation technique mixed with the conventional and evolutionary techniques is presented in the paper. The reduced system (RS) is obtained by mixing the advantages of the two methods. For the conventional technique, the numerator of the RS is achieved by using the Pade approximations and improved Pade approximations, whereas the denominator is obtained by the stability equation technique (SET). For the evolutionary technique, numerator of the RS is obtained by minimizing the integral square error (ISE) between transient responses of the original and the RS using the genetic algorithm (GA), and the denominator is obtained by the stability equation method. The proposed RS retains almost all the essential properties of the original system (OS). The viability of the proposed technique is proved by comparing its time, frequency responses, time domain specifications, and ISE with the new and popular methods available in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Technology and Web Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.