Abstract

This paper presents a convenient strategy to modify the surface of whole-Teflon microfluidic chips by coating the channel walls with a thin layer of polydopamine (PDA) film, which is formed by oxidation-induced self-polymerization of dopamine in alkaline solution. Two coating strategies, static incubation and dynamic flow, are demonstrated and used for tuning the physical and chemical properties of the coated channel walls. The functionalized surfaces were investigated with the contact angle, X-ray photoelectron spectroscopy, and atomic force microscopy measurements. The coating time was optimized according to the fluorescent intensity of the green fluorescent protein immobilized on the modified surface. Applications of the PDA-modified Teflon microchips in bioanalysis were demonstrated with a typical sandwich immunoassay. Moreover, long-term cell culture experiments on modified and native Teflon chips revealed that the chip biocompatibility can be greatly improved with PDA coating. The results indicate that the surface properties of the Teflon can be easily controlled by the PDA modification, thus greatly expanding the application scope of whole-Teflon chips for various chemical and biological research fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.