Abstract

We consider a model for the solidification of an ideal ternary alloy in a mushy layer that incorporates the effects of thermal and solutal diffusion, convection and solidification. Our results reveal that although the temperature and solute fields are constrained to the liquidus surface of the phase diagram, the system still admits double-diffusive modes of instability. Additionally, modes of instability exist even in situations in which the thermal and solute fields are each individually stable from a static point of view. We identify these instabilities for a general model in which the base-state solution and its linear stability are computed numerically. We then highlight these instabilities in a much simpler model that admits an analytical solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.