Abstract

The linear stability theory is used to investigate analytically the effects of gravity modulation on solutal convection in the mushy layer of solidifying binary alloys. The gravitational field consists of a constant part and a sinusoidally varying part, which is synonymous to a vertically oscillating mushy layer subjected to constant gravity. The linear stability results are presented for both the synchronous and subharmonic solutions. It is demonstrated that up to the transition point between the synchronous and subharmonic regions, increasing the frequency of vibration rapidly stabilizes the solutal convection. Beyond the transition point, further increases in the frequency tend to destabilize the solutal convection, but gradually. It is also demonstrated that the effect of increasing the ratio of the Stefan number and the solid composition (η 0 ) is to destabilize the solutal convection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.