Abstract

The convective heat transfer process between the orthogonal air jet impingement on a uniformly heated flat plate is studied numerically. In this numerical study, three-dimensional (3D) simulations are carried out in Fluent 14.0 to investigate the effect of Reynolds number, distance between nozzle exit and the plate on the heat transfer characteristics. V2F turbulence model has been used to model turbulence. Standard κ–ε, Realizable κ–ε, κ–ε RNG, SST κ–ω, Standard κ–ω, V2F turbulence models have been studied for orthogonal jet impingement in this work. It is observed that for jet exit to plate distance (Z/d) of 0.5 ≤ Z/d ≤ 6, V2F model is best suited. For Z/d ≤ 0.5 and Z/d ≥ 6, numerical results vary significantly from the experimental results. Reynolds number of 12,000, 20,000, and 28,000 has been studied. In this paper, results for various jet exit to the plate distance (Z/d) from 0.5 to 10 are presented. At low jet plate spacing Z/d < 4, secondary peak in Nusselt number distribution over the plate is visible in experimental results. V2F model correctly predicts the secondary peak in Nusselt number variation over the plate. Other models fail to predict the secondary peak which is of significant importance in air jet impingement at low jet-plate spacing (Z/d < 4).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call