Abstract
This study presents the thermal and fluid flow characteristics of five heat sinks that have been fabricated by a rapid manufacturing technique known as Selective Laser Melting. The five heat sinks consist of two conventional designs, the cylindrical pin and rectangular fin array, for comparison purposes, and three novel heat sinks: a staggered elliptical array; a lattice; and a rectangular fin array with rounded corners. The experimental results for the rectangular fin were compared with data from the literature and were found to be consistent. The rectangular fin with rounded corners proved able to transfer the largest amount of heat whilst improving upon the pressure drop performance of the standard rectangular fin array. Although the lattice arrangement made use of the fabrication process’ ability to manufacture heat sinks with high surface area to volume ratios, its performance was limited by the lack of interaction between the cooling air and structure. In terms of both heat transfer performance and pressure drop, the staggered elliptical array, which cannot be manufactured by conventional techniques, outperformed the other heat sinks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.