Abstract

AbstractUtilizing spaceborne cloud radar and lidar (CloudSat/CALIPSO) observation products, we examine vertical distributions of clouds and quantify their radiative effects associated with equatorial Rossby and Kelvin waves. The most important result is that the radiative heating substantially increased the generation of the eddy available potential energy by 19% and 40%, in Rossby and Kelvin waves, respectively, adding to the convective latent heating. Composite analyses indicate a simultaneous development between deep‐convective anvil clouds and stratiform clouds of mesoscale convective systems in the Rossby waves, and a transition from low‐level clouds, anvil clouds to stratiform clouds in the Kelvin waves. These are consistent to precipitation characteristics provided by precipitation radar observation, and thus the apparent heat source can be estimated by combining convective heating and radiative heating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.